Second Semester M.Sc. Degree Examination, June 2016 (NS) (2010-11 and Onwards) CHEMISTRY

C 201 : Inorganic Chemistry - II (Co-ordination Chemistry)

Time: 3 Hours Max. Marks: 80

Instruction: Answer Question No. 1 and any five of the remaining.

Answer ten questions of the following:

(2×10=20)

- a) For a co-ordination compound formation, ∆G° = −10.56 kJmol⁻¹. Calculate the stability constant at 25° C (Given : R = 8.314 JK⁻¹ mol⁻¹).
- b) Explain why [Cu (en) (H2O)2]2+ is stabler than [Cu (NH3)2 (H2O)2]2+.
- c) What is spectrochemical series ? Why is it called so ?
- d) Which of the following would undergo Jahn Teller distortion?
 [Cu(H₂O)₆]²⁺, [FeF₆]³⁻, [Co(H₂O)₆]²⁺ and [CoCl₄]²⁻.
- e) Indicate the possible modes of bonding of isocyanide to metals.
- f) Explain the Cotton effect.
- g) Some values of the Racah parameter are 920, 760 and 1050 cm⁻¹. Assign these values to the ions, Cr³⁺, V²⁺ and Mn⁴⁺. Explain your choice.
- h) Obtain the total number of microstates for carbon and V3+.
- Copper acetate has a lower magnetic moment at room temperature with respect to its spin-only value. Why ?
- j) What is meant by spin cross over ? Why spin cross over systems are not possible in tetrahedral complexes ?
- k) Predict the geometries of metal complexes with co-ordination numbers 7 and 8.
- Account for the fact that NO is capable of forming both linear and angular M-NO groups in nitrosyl complexes.
- a) Nature of the metal ion affects the stability of metal complexes. Enumerate with suitable examples.
 - Describe the spectrophotometric method of determination of stability constant of a metal complex.
 - c) The stepwise stability constant values for Cu²⁺/NH₃ system are as follows: log k₁ = 4.28, log k₂ = 3.55, log k₃ = 2.99 and log k₄ = 2.36. Calculate the overall stability constant of [Cu (NH₃)₄]²⁺: (3+6+3) P.T.O.

- a) Illustrate any two experimental evidences for covalency in M-L bonding of complexes.
 - b) Sketch the MO energy level diagram for [FeF₆]³⁺ involving σ bonding only.
 Give its sallent features.
 - c) Identify all the isomers of (i) [M(aa)₂bc] and (ii) [M(aa)₂b₂] where (aa) is a bidentate ligand. Which of them are optically active? (4+4+4)
- a) Distinguish between CD and ORD. Discuss the use of CD in determining the absolute configuration of metal complexes.
 - b) Write the structures of Mn₂ (CO)₁₀ and Fe₃(CO)₁₂ and discuss the bonding of CO in there complexes. Explain why metal atoms/ions occur in lower oxidation states in carbonyl complexes.
 - c) Give a brief account of stereochemical non-rigidity.

(5+4+3)

- 5. a) How does ³F state of Ni²⁺ free ion transform in an octahedral field? Assign the possible transitions. Calculate the values of Dq, B' and β for [Ni(H₂O)₆]²⁺ which exhibits absorption bands at 8700. Na500 and 25000 cm⁻¹ (Given: B for free Ni²⁺ ion = 1040 cm⁻¹).
 - Giving suitable examples, explain the characteristics of different types of charge transfer transitions. Explain will compounds exhibiting charge transfer transitions are intensely colored.
 - c) State and explain the selection rules of electronic spectroscopy. (4+5+3)
- 6. a) Discuss the spectral and magnetic properties of lanthanides.
 - Distinguish between ferromagnetism and antiferromagnetism. Explain the effect of temperature on magnetic susceptibility of ferromagnetic and antiferromagnetic compounds.
 - c) For $[Ni(H_2O)_6]^{2+}$ complex, $\mu_{alf} > \mu_a$, while for $[Cr(H_2O)_6]^{3+}$ the μ_{alf} is comparable to μ_a value. Explain. (4+5+3)
- 7. a) Discuss the bonding in dinitrogen and phosphine metal complexes.
 - b) Give a brief account of self assembly in supramolecular chemistry.
 - c) Mention the limitations of CFT. (6+3+3)